- 广州子锐机器人技术有限公司
- 服务热线:020-82000787(8:30-17:30)
- 联系手机:15889988091(非工作时间)
- 座机:020-82000787
- 传真:020-32887675
- 邮箱:gz@zr-robot.com
- 广州市番禺区东环街金山谷创意八街1号109
- 当前位置:首页 > 机器人资讯 > 工业机器人发展轻型化配套轴承技术还需加强
工业机器人发展轻型化配套轴承技术还需加强
工业机器人发展轻型化配套轴承技术还需加强
ZR-ROBOT子锐机器人维修网讯:经过半个世纪的发展,工业机器人因其重复精度高、可靠性好、抗恶劣环境能力强等优点,已经在汽车制造等多个领域广泛应用。工业机器人的普及应用是汽车企业实现自动化生产,提高产品质量和生产效率,节约劳动力和制造成本、增强行业竞争力的有效手段。
工业机器人发展轻型化配套轴承技术还需加强
国内工业机器人制造产业从20世纪80年代七五科技攻关开始起步,在国家科技攻关项目863计划的支持下,经过十几年的研制、生产和应用,使中国的机器人产业从无到有,跨出了一大步。目前,从中国工业机器人市场来看,国外进口的工业机器人所占重比较大,与外资品牌相比,造成国产机器人在无故障运行时间、定位精度、定位速度以及精度保持度方面的差距主要体现在核心零部件技术不达标。工业机器人轴承作为工业机器人的关键配套元件,对机器人的运转平稳性、重复定位精度、回转精确度以及工作的可靠性等关键性能指标具有重要影响。
工业机器人专用配套轴承的特点与分类
现代工业机器人的方向发展趋于轻型化,这就要求与其配套的轴承具有更加轻便的结构。由于轴承要在有限的安装空间里满足工业机器人主机对轴承承载能力、精度、刚度和摩擦力矩的性能要求,选用标准的通用轴承很难满足这种要求,而薄壁轴承追求外形极限尺寸,具有重量轻、体积小、精度高、寿命长等优良性能,能够很好地解决这一问题。
工业机器人专用轴承主要有等截面薄壁轴承、薄壁交叉圆柱滚子轴承、RV减速器用轴承及谐波减速器用柔性轴承等,它们大多采用非标准、多滚动体等设计原则。
1.等截面薄壁轴承
与普通轴承不同,该种轴承每个系列中横截面大多为正方形,且尺寸被设计为固定值:在同一个系列中横截面尺寸是不变的,它不随内径尺寸增大而增大,故称之为等截面薄壁轴承。等截面薄壁球轴承包括薄壁四点接触球轴承系列,薄壁角接触球轴承系列和薄壁深沟球轴承系列三种系列,多被应用于工业机器人的腰部、肘部、腕部。在内径尺寸相同的情况下,薄壁等截面球轴承比标准滚动轴承装的钢球数多,因此改善了轴承内部受力分布,减小了钢球与沟道接触处的弹性变形,提高轴承的承载能力。
2.薄壁交叉圆柱滚子轴承
薄壁交叉圆柱滚子轴承内部结构采用滚子呈90?相互垂直交叉排列,单个轴承能同时承受径向力、双向轴向力与倾覆力矩的共同作用,滚子之间装有间隔保持器或者隔离块,可以防止滚子的倾斜或滚子间的相互磨察,有效防止了摩擦力矩的增加(见2)。另外,滚子垂直交叉排列的结构可以避免滚子的锁死现象;同时又因为轴承内外圈是分割的结构,间隙可调,即使被施加压力,也能获得较高的旋转精度。薄壁交叉滚子轴承以其轻型结构与良好的性能主要用于机械手臂、关键式机器人肩部、腰部、臀部等。
3.RV减速器轴承
RV减速器又称精密轴承减速器,它以其体积小,抗冲击力强,扭矩大,定位精度高等诸多优点被广泛应用于工业机器人。对于RV减速器,轴承的外形结构、精密定位是其结构紧凑、刚性优良、传动精密关键因素,RV减速器轴承包括多种薄壁轴承系列及圆柱滚子保持架组件系列。
4.谐波减速器
谐波减速器是一种靠波发生器使柔轮产生可控弹性变形,利用柔性轴承可控的弹性变形来传递运动和动力的,其特点是结构紧凑、运动精度高、传动比大,多用于中小转矩的机器人关节。柔性轴承是谐波减速器的核心部件,通过轴承的弹性变形达到高减速比的要求,而且,谐波减速器寿命主要取决于柔性轴承寿命(见4)。柔性轴承工作中随柔轮的弹性变形不断的发生变化,不仅承受循环应力载荷,而且承受交变应力载荷。
工业机器人专用配套轴承现有技术
工业机器人专用配套轴承轴承不仅是工业机器人关节系统转动与运动的核心部件,作为承载元件,其整体性能优劣对系统的安全、高效的运行有着至关重要的作用。薄壁轴承柔性特征对机器人动态性能、载荷能力及运动精度的影响已不容忽视。
1.工业机器人配套轴承设计原则
通常,通用轴承结构形式及主参数的确定是以额定动载荷为目标函数,在一定的约束条件下,通过优化得到。薄壁轴承在使用过程中,安川机器人维修,不仅要有较大的额定动载荷以保证轴承有足够的承载能力,还要有较强的刚度和较小的摩擦力矩以保证机器人主机的定位精度、灵活运转。因此,在轴承设计分析过程中,应将额定动载荷、刚度和摩擦力矩3个指标作为目标函数进行多目标优化设计,同时着重考虑这些参数的变化对轴承性能方面所产生的不同影响。
柔性轴承属于特殊的薄壁球轴承,部分设计可参照薄壁球轴承的设计方法,如主参数钢球直径、沟曲率系数、沟径的选择和计算、材料的选择、热处理及车、磨加工工艺等。但由于它的特殊使用要求,其主参数如钢球数量、球组节圆直径、挡边直径、填球角、保持架球兜直径和形状、游隙的选取和计算公式需要作相应改变。
2.机器人用轴承关键技术
(1)薄壁轴承负游隙的精准控制技术。工业机器人轴承要求运转平稳,要有合适的启动摩擦力矩,因此轴承生产、装配时要有合适量的负游隙。轴承的负游隙过大或过小会直接影响轴承的噪声、振动与寿命,由于机器人用薄壁轴承内外套圈的壁厚较薄,采用加载加载方式测量游隙时,易导致套圈变形,负游隙的量很难控制,需要采用特殊的加工装配方法和工艺,并使用特殊的装配工具。
(2)薄壁角接触球轴承装配高度的精确控制。机器人结构紧凑,安装空间精确,要求轴承的装配高的偏差严格,而且国外同类轴承的装配高也控制极为严格。由于薄壁角接触球轴承套圈壁厚很小,极易产生变形,各尺寸精度难以精确控制,内外圈及滚动体选配尺寸难以严格控制,造成轴承装配后装配高偏差过大。因此,要想实现薄壁角接触球轴承装配高的精确控制,甚至达到万能配对的目的,必须对轴承进行特殊的沟位置设计、磨加工工艺制订、精确的选配等,同时增加轴承凸出量的修磨工艺。
(3)薄壁轴承的精准装配技术。由于机器人专用系列精密轴承壁厚超薄,刚度差,采用普通的装配方法及模具,在加热装配合套时极易变形。因此,要实现薄壁轴承的精密装配,达到成品的各项指标,必须采用针对薄壁轴承的装配尺寸选配、装配工艺制订和特殊的装配模具及附件,对选配好的轴承套圈进行严格的修磨,制定详细、严格的装配工艺,并研制专用的装配合套工具及附件,以保证轴承装配后的精度。
(4)薄壁轴承套圈内外径非接触测量技术。薄壁轴承套圈壁厚非常薄,需要精密车和磨来达到所要求的公差,同时薄壁轴承套圈轮廓参数的测量精度要求也极高,采用传统的检测手段,如标准轴承外径测量使用的D913仪器,用0.001的扭簧表测量,要求有一定的测力,但是表的测力人为很难精确控制,直接影响薄壁套圈的外径测量精度,无法满足检测的需求。因此,需要对薄壁轴承套圈内外径测量方法进行研究,以非接触光学精密测量技术为基础,机器人维修,综合运动计算机主动视觉、像处理、精密运动控制及计算机控制等相关技术,研制开发一套薄壁轴承套圈外轮廓专用测量仪器。