• 24小时机器人维修热线:020-82000787

子锐站内搜索 互联网
  • 广州子锐机器人技术有限公司
  • 服务热线:020-82000787(8:30-17:30)
  • 联系手机:15889988091(非工作时间)
  • 座机:020-82000787
  • 传真:020-32887675
  • 邮箱:gz@zr-robot.com
  • 广州市番禺区东环街金山谷创意八街1号109
  • 当前位置:首页 > 机器人资讯 > 人工智能黑盒揭秘:深度神经网络可视化技术

人工智能黑盒揭秘:深度神经网络可视化技术

时间:2019-09-19   点击:   来源:互联网   作者:匿名
简介:人工智能黑盒揭秘:深度神经网络可视化技术 深度学习模型表述的难点与意义 深度神经网络(DeepNeuralNetwork,DNN)作为当前人工智能应用的首选模型,在图像识别,语音识别,自然语言处理,计算生物,金融大数据等领域成效显著。但深度神经网络又被称为黑……

人工智能黑盒揭秘:深度神经网络可视化技术

深度学习模型表述的难点与意义

深度神经网络(DeepNeuralNetwork,DNN)作为当前人工智能应用的首选模型,在图像识别,语音识别,自然语言处理,计算生物,金融大数据等领域成效显著。但深度神经网络又被称为黑盒模型,多层隐藏结构,数据/特征矢量化,海量决策关键元等因素让模型使用者犯难:模型决策的依据是什么?应该相信模型么?特别是对于金融,医药,生物等关键型任务,机器人维修,深度学习模型的弱解释性成为人工智能项目落地的最大障碍。

云脑科技自主研发的Deepro深度学习平台利用可视化技术,集成了最前沿的各类深度神经网络可视化组件,分析与显化内部隐藏结构与模型输出的关系,解决黑盒难题。

深度神经网络的可视化

作为理解人工智能系统的主要技术,模型可视化是一个由来已久而且宽泛的话题。模型可视化与数据可视化属于不同的范畴,数据可视化通过降维,主成分分析等技术来分析数据的结构,模型可视化针对的是对机器学习模型本身的理解。深度神经网络又是最为复杂的机器学习模型,其可解释性与可视化性更加具有挑战性。网络模型为什么起作用,它是否足够好,图像识别是如何抽象出猫这个概念的?本段分析了几种典型深度神经网络可视化技术,详尽展示了前沿的可视化原理以及解释性效果。

云脑Deepro采用的CNN可视化

作为最有效的神经网络之一,CNN(ConvolutionalNeuralNetwork,卷积神经网络)解决了大量复杂的机器学习实际问题。CNN被广泛应用于图像识别,语音识别,语义识别等系统。最近的研究表明CNN在包含自动驾驶在内的自动复杂智能系统中也大展身手。CNN结构通常由一个或多个卷积层和顶端的全连通层组成,同时也包括关联权重和池化层(poolinglayer)。这一结构使得卷积神经网络能够利用输入数据的二维结构。相比较其他深度、前馈神经网络,CNN需要的参数更少,能够更好的利用GPU作大规模并行处理,KUKA机器人维修,使之成为一种颇具吸引力的深度学习结构。

举个CNN的栗子

CNN带来了高精度的预测模型,但是同时也留下重要的问题,在复杂的多层非线性网络结构中,究竟是什么让训练好的CNN模型给出近乎完美的预测答案?从CNN被大规模研究使用以来,学者们持续不断的探索可以理解和解释CNN的方法,其中可视化技术被证明是解释CNN内部结构最有效的方法之一。CNN可视化技术包括,独立单元激活的可视化,图案和区域生成法,维度缩减空间表示法等。

独立单元激活的可视化

理解CNN内部网络的操作需要追踪多层网络中每一层的特征状态,而中间层的状态可以通过一种叫做DeconvNet(DeconvolutionalNetwork,去卷积网络)的技术反向映射回输入层的图像像素空间。DeconvNet可以理解成另一个CNN,利用同样的网络结构,包括卷积元,池化等,但相对于CNN是反向的。DeconvNet主要作用是把CNN从像素学会的特征给还原成像素。一个多层CNN网络中每一层都会对应一个DeconvNet,这样做的好处是得到的DeconvNet也是连续的,可以从任意一个输出层或者中间层反推到输入层的对应像素。

CNN与DeconvNet

设定好DeconvNet后,如果对CNN网络的某一个激活元感兴趣,只需保留该单元而把其它单元设为0值后提交给DeconvNet。DeconvNet进行反池化,非线性化,去卷积化等操作,每一层DeconvNet重复此操作后直至到达最初的像素空间。

CNN隐藏层的可视化

该图展示了CNN在ImageNet训练后得到的模型中每一层CNN中最强的激活特征单元(灰度图片),以及该激活单元通过DeconvNet后生成的像素图(彩色图片)。通过DeconvNet可以非常清楚的理解每一层CNN的作用。

通过DeconvNet分析得出,CNN第一层训练学习的是以边为单位的基本元,第二层学习了角,圆等其他图像元,之后的第三层则开始学习复杂图案,而且会把相似的图案归类到一起。限于篇幅的原因后面更深的CNN层图片就不放出了,通过DeconvNet可以分析出CNN第四层开始出现物体的特征,比如狗的脸部,鸟的腿部等,第五层开始出现整个物体,以及物体的不同姿势和形态。

DeconvNet清楚的证明了CNN高效的学习能力:通过学习图像中物体从小至大的特征而归纳出物体的整体特征。由此得出结论CNN网络中海量的内部隐藏特征元并不是随机或者不可解释的。该结论极大的增加了使用者对于CNN模型的理解,从而进一步信任模型的结果。DeconvNet技术除了可以观察解释CNN内部结构外,还可以用来排除模型建立和调试时遇到的问题,以及通过分析内部结果来得到更好的模型。研究表明CNN模型一大优势就是预测精确度与内部隐藏层的局部结构有很强的关联。

图案和区域生成法

除了从CNN内部结构着手的DeconvNet,图案和区域生成法也是有效的模型可视化手段。通过进行数值优化技术来生成图案,CNN预测的结果可以被更好的可视化并带有解释性。以常见的图像分类问题来举例,CNN在大量图像数据集上训练得出一个分类器模型:给定的一张图像会被标注为一个或多个类别,比如一张猫的照片会标记为猫或某种猫。对于一个特定的标注类,图案生成法通过数值优化生成可以表述为CNN分类分数的图像,也就是把CNN理解分类的过程给画了出来,如下图所示。

CNN所理解的:洗衣机,键盘,狐狸,鹅,鸵鸟,轿车

从生成的图像中可以看出CNN对于图像分类的判断与人对图像的判断有一定的相似之处,物体的部分特征可以表述出来。但是CNN又学会了自有和特有的判定条件,而有一些条件从人类的角度上来看可能是显而易见的错误,比如上图中鹅有多于两条腿等。通过图像生成可视化可以帮助理解CNN模型,从而进行更好的排错和优化。

图像生成法的另一类应用是图像的区域识别。区域识别是图像识别应用中广泛需求的技术,在安防人脸识别,自动驾驶环境识别等应用中是识别准确的关键步骤。图像生成法先建立CNN分类与图像空间的映射关系,通过反向梯度传导来更新映射关系中的权重,最终得到一个完整的类显著映射集。给定一个CNN指定分类和原始输入图像,该映射集可以生成特征图案。

映射集生成灰度图案,白色部分是CNN标注的显著区域

利用单次反向梯度传导就可以快速得到上图中的映射集,从而可以显示出CNN判断分类的特征和区域。比如通过生成法可以理解CNN学习的过程同时包含从图像中找到小狗的位置,并加以判断这是一只小狗。用生成法产生的映射集可以进一步结合GraphCut颜色分割技术来进行图像区域识别和物体分割。通过生成法产生的映射集划定了图像的大体边界,加上颜色分割技术的细节修正可以快速高效的识别物体区域。

原图(左)映射生成图(中1中2)产生分割图(右)

生成法利用CNN分类模型实现了区域识别。原图中的物体不仅被标识为正确类别,同时也标注出物体的区域和边界。整个过程又可以通过映射集可视化。

云脑Deepro采用的RNN可视化

免责声明:本网部分文章和信息来源于互联网,本网转载出于传递更多信息和学习之目的。如转载稿涉及版权等问题,请立即联系网站所有人,我们会予以更改或删除相关文章,保证您的权利。
扫二维码手机浏览
  • 广州子锐机器人技术有限公司
  • 地址:广州市番禺区东环街金山谷创意八街1号109
  • 电话:15889988091
  • 传真:

Copyright © 广州子锐机器人技术有限公司版权所有 www.zr-robot.com     网站备案ICP:粤ICP备15095857号

留电回访
  • 您的姓名
  • 联系电话
  • 需要维修或帮助的产品型号及说明
  •  
24小时工业机器人维修热线:020-82000787(首次维修半价优惠)